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Abstract: The study of complex networks is receiving 
considerable attention because of its use in various 
socioeconomic theories. This field is growing at a rapid 
pace and it is underscored by researchers from physics, 
mathematics, biology, computer science and sociology. A 
well networked community consists of intense social 
interaction and information spreads quickly and broadly. 
This interaction when subjected to various parameters 
shows paradoxical results. Here I review a simple model 
which depicts the emergence of a dynamic society with three 
features: link formation, link deletion and search with 
adjustment. The model aims to make it feasible to 
understand how a highly dense network evolves from social 
interactions and to examine the statistical properties of the 
network.  This formulation is implemented computationally 
to obtain average degree and clustering coefficient of the 
network under study. The model shows a region of 
coexistence of two states which is studied. The following text 
investigates the switch controlling the dynamic behaviour of 
the coexistence region and also explores the future 
prospects of complex networks in terms of viability of its 
application in the socioeconomic dimensions. 
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1. INTRODUCTION 

1.1 CONCEPT OF A NETWORKED SOCIETY 

A networked society is built upon intense social interaction 
and the information spreads widely within the system. The 
environment can be either static or volatile .In a volatile 
environment, individuals always keeps searching for fresh 
opportunities. It is a very important pathway of social 
networks which has unfolded many socio economic 
phenomena. This idea can be seen through various examples 
one of them is finding new opportunities like jobs or 
investments by economic agents. It has been consistently 
shown by sociologists and economists [1,2] that personal 
relationships and peers play a commanding role in 
individual's life. This leads to relations among friends, 
relatives or neighbours in different socioeconomic 
dimensions. A common thesis proposed to justify this 
example, is in the presence of economic volatility where the 
quality and quantity of relationships decide one's social 
links and forms the basis of search. 

2. LITERATURE REVIEW 

The study of complex networks has attracted much attention 
[5–9], but it has been concerned mainly with simple 
phenomenological models reproducing some stylized facts 
in either stationary or non-stationary (e.g., growing) 
contexts. In contrast, sociological [10] and economic 
literature [11] has traditionally placed emphasis on 
understanding the main features and implications of stable 
social structures. Recently, however, much effort has been 
devoted as well to studying the dynamic forces (essentially, 
purposeful agent adjustment) that underlie the evolution and 
formation of networks in stationary social environments 
[12–15].  

3. MODEL 

The objective of this paper is to integrate these approaches 
by proposing a simple model of a society that embodies the 
following three features: agent interaction, search cum 
adjustment, and volatility (i.e. random link removal). 
Individuals are involved in bilateral interaction, as reflected 
by the prevailing network. Through occasional update, the 
value of some of the existing links deteriorates and is 
therefore lost. In contrast, the individuals also receive 
opportunities to search that, when successful; allow the 
establishment of fresh new links. Over time, this leads to an 
evolving social network that is always adapting to changing 
conditions. The model studied here is a simplification of a 
more complex model proposed by one of the authors [16] to 
understand how the network dynamics impinges on strategic 
behaviour.  

One of the key ingredients of our model is creation of links 
to friends of friends, a mechanism that was introduced by 
Vazquez [17] in the context of growing networks. The 
model is also similar to that proposed in ref. 18 to explain 
the emergence of the small-world property [5] in social 
networks. In our context, we find as well that the small-
world property arises when the social network is dense, but 
our focus is quite different. Our aim is to understand how a 
highly connected network may emerge from social 
interactions and to develop a comprehensive picture of the 
network’s macroscopic statistical properties. In particular, 
we find quite nontrivial clustering properties that appear to 
play a key role in the dynamics. In contrast with ref. 18, our 
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model does not reproduce a scale-free topology, which is 
instead typical of growing networks (8) and static random 
networks with fitness driven attachment rules [19]. Rather 
we find single-scale networks consistent with the empirical 
evidence of refs. 20 and 21 on several social networks, 
giving support to their conjecture that link-constrained 
dynamics leads to single-scale distribution. Finally, among 
the vast recent literature on network dynamics, our work 
also relates to ref. 22 that found a ‘‘topological’’ phase 
transition in networks and refs. 23–25 that discuss 
robustness of the network with respect to removal of links 
or nodes and transition from highly connected to diluted 
networks in various contexts. 

The model may be described as follows. There is a 
population of n agents involved in a set of bilateral 
interactions, as specified by the prevailing social network. 
This network is defined, at any given point in time t, by the 
(undirected) graph Г (t) = {N,g(t)}, where N = {1, 2, . . ., n} 
is the population of nodes (or agents) and g(t) ϵ N x N 
represents the set of links. The social interaction taking 
place across a link ij ϵ g between i and j may be conceived 
as, say, a collaboration that is profitable for both parties.  

In any time interval [t, t + dt ] any existing link ij ϵ g(t) 
vanishes with probability λdt. This is interpreted as a 
random perturbation of the environment, or volatility for 
short. In addition, with independent probability dt every 
agent i is given the opportunity of establishing a new link 
with some other agent j, randomly drawn from the 
population. Links can also be formed through search via 
friends: every agent i, with a probability dt, asks one of his 
neighbours j, randomly chosen, to introduce him to one of 
j’s neighbours, say k. If k is not already a neighbour of i the 
link ik is established.  

Naturally, nothing occurs if i has no neighbours or j has no 
other neighbour but i. At a heuristic level, the link formation 
process can be decomposed into two complementary 
components. On the one hand, there is the force of volatility 
that stamps out the value of some pre-existing links and 
thus, in effect, destroys them. On the other hand, there are 
fresh new opportunities that arise through either global 
search or communication with neighbors. This 2-fold 
interpretation of the process makes the role of information 
clear. The dynamics of network formation can be viewed as 
a continuous struggle against volatility, with the information 
arising on new profitable opportunities partially mediated 
(thus constrained) by the existing network. In the stationary 
state agents’ constant search must compensate volatility. 

4. RESULTS 

The results have been stimulated using MATLAB and have 
been verified to be similar to those calculated 
mathematically. 

 

Fig. 1. Average degree z (lower) and clustering coefficient 
(upper) from computational simulations with η = 0.001 and 
λ = 0.1 for population size n = 100. The process was 
performed as follows. At each time step, with a probability 
η, a long range link was added between two nodes taken at 
random. The probability of ξ, a local search process was 
done randomly. At the end, a set of randomly selected links 
are removed with a probability of λ. This process is carried 
out for n such time steps. Each of the points in the plot is 
obtained by taking averages over the nodes and over time. 

The three rates (λ, η, and ξ) are the parameters of our model, 
but one of them can be eliminated by an appropriate time 
rescaling. We are interested in the properties of the network 
g (t) in the stationary state as t tends to infinity. Relevant 
magnitudes in this respect are the density of the network and 
its clustering. Network density at any t is measured by the 
average node degree z (t), where the degree ­¨�®� of a node i 
is defined by the number of neighbors it has. On the other 
hand, network clustering C (t) is obtained by averaging the 
clustering coefficient ¨̄�®� of all nodes i, which is the 
fraction of pairs of neighbours of i who are also neighbors 

among themselves. Although random networks have ¨̄ ~ �©, 

social networks typically have a clustering coefficient (5) 
bounded above zero.  

Fig. 1 shows what happens in a computer experiment where 
the local search rate is ξ first increased and then decreased 
very slowly. For small ξ, network growth is limited by the 
global search process that proceeds at rate η. Clusters of 
more than two nodes are rare, and when they form local 
search quickly saturates the possibilities of forming new 
links. Suddenly, at a critical value around 0.6 (ξ /λ), a giant 
component connecting a finite fraction of the nodes 
emerges. The average degree z indeed jumps abruptly 
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around 0.6 (ξ /λ). The network becomes 
densely connected as increases further. But 
we observe that the giant component remains
beyond the transition point {0.6 (ξ /λ)}. Only
does the network lose stability and the population
to an unconnected state. So, here we check

Fig. 2. Graph plotted for average degree (z) versus

Fig. 3. Graph plotted for average degree (z) versus
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 more and more 
 when decreases, 

remains stable also 
Only at this point 

population gets back 
check the switch 

because of which this bi- stability may
A lot of experiments have been carried
jumps happen in the bi-stability region.
carried out for different values of 
for average degree (z) of the system.

versus 10,000,000 time steps to observe jumps in for a specific

versus 10,000,000 time steps to observe jumps in for a specific
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may be subject to change. 
carried out to see how many 

region. This experiment is 
k (ξ /λ) around 0.5 - 0.6 

system. 

 

specific value of k(ξ /λ) = 0.475 

 

specific value of k(ξ /λ) = 0.4875 
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Fig. 4. Zoomed Version:
time steps to observe

There is a whole interval where both a dense
and one with a nearly empty network
coexistence region shrinks as η increases and
for η > 0.03. This behaviour attains already
small n, even though in this case finite 
strong. The average clustering coefficient
nontrivial behaviour. In the unconnected phase,
with as expected. In this phase, C is close to
expansion of the network is mostly carried
global search, and local search quickly
possibilities of new connections. On the other
dense-network phase, C takes relatively small
makes local search very effective. Remarkably,
C decreases with in this phase, which
counterintuitive: by increasing the rate 
between neighbours form through local search,
C of these bonds decreases.  

The stability of the dense network phase in
region confers resilience to the system. It
dense network is robust with respect 
conditions (higher or smaller) and it may resist
conditions in which a stable dense network 
In fact, similar behaviour is found, fixing and,
of the volatility rate. The system behaviour 
1 is typical of first-order phase transitions and
similar to the rise of hysteresis in physics,
that has its origins in the ergodicity breakdown.
principle, the process is ergodic, because all
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Version: Graph plotted for average degree (z) versus 10,000,000
observe jumps in for a specific value of k(ξ /λ) = 0.4875 

dense-network phase 
network coexist. The 

and it disappears 
already for moderately 

 size effects are 
oefficient C shows a 

phase, C increases 
to one because the 

carried out through 
quickly saturates all 

other hand, in the 
small values. This 

Remarkably, we find that 
which is rather 
 at which bonds 

search, the density 

in the coexistence 
It implies that a 

 to deteriorating 
resist even under 
 would not form. 

and, as a function 
 observed in Fig. 

and is remarkably 
physics, a phenomenon 
breakdown. Even if, in 

all configurations 

can be reached from any other configuration,
large the configuration space gets
ergodic components. Transitions across
these components require large deviations
with a probability that is exponentially
require fluctuations out of equilibrium
local neighbourhoods whose number
below). The occurrence of phase coexistence
also intuitive and has many analogies
fluid: the local process (ξ) mimics
interaction, whereas the λ and η
effects of temperature and random
analogous to compressing the fluid
which increases the chances that two
the range of mutual interaction. An
that interaction is long ranged in
discussed in ref. 27, makes it impossible
one phase into the other: the system
the other phase. 

5. CONCLUSIONS 

The transitions have been studied
observed in the graphs plotted for average
time steps which indicate that within
crests and troughs. These crests and
of the fact that it is not a clean transition
another but it is subject to volatility.
transitions between the two components
typically has to wait astronomically
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10,000,000  

configuration, when n is 
gets broken into different 

across the boundaries of 
deviations that occur only 

exponentially small in n (they 
equilibrium in a collection of 

number is of order n; see 
coexistence in our model is 

analogies with that of a real 
mimics short-range attractive 

η processes capture the 
random collisions. Increasing is 

fluid (reducing the volume), 
two molecules enter into 

An important difference is 
in our model, which, as 

impossible to have bubbles of 
system is either all in one or in 

studied and few peaks are 
average degree (z) and n 

within the region there are 
and troughs are indicative 

transition from one state to 
volatility. Strictly speaking, 

components will occur, but one 
astronomically large times. 
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